
Inheritance recap
Object: the superest class of all

Inheritance and text in GUIs

Check out MoreGUIness from SVN

A quick recap of last session

 Sometimes a new class is a
special case of the concept
represented by another

 The new class inherits from
the existing one:
◦ all methods

◦ all instance fields

 Change just what we need
◦ Don’t redeclare fields!

◦ Don’t redeclare methods which
are good enough

◦ But overload ones that aren’t

◦ Make use of super.method and
super() as needed.

Shape circle = new Ellipse2D.Double(x, y, 20, 20) // OK

vs:

Ellipse2D.Double circle = new Shape(); // Why not?

 As an example, Ellipse2D.Doubles have x coordinates,
while Shapes do not. The solution? Cast!
((Ellipse2D.Double)shape).x += xVelocity;

The superest class in Java

 Every class in Java inherits from Object

◦ Directly and explicitly:

 public class String extends Object {…}

◦ Directly and implicitly:

 class BankAccount {…}

◦ Indirectly:

 class SavingsAccount extends BankAccount {…}

Q1

 String toString()

 boolean equals(Object otherObject)

 Class getClass()

 Object clone()

 …

Often overridden

Sometimes useful

Often dangerous!

Q2

 Return a concise, human-readable summary
of the object state

 Very useful because it’s called automatically:
◦ During string concatenation

◦ For printing

◦ In the debugger

 getClass().getName() comes in handy
here…

 Should return true when comparing two
objects of same type with same “meaning”

 How?
◦ Must check types—use instanceof

◦ Must compare state—use cast

@Override

public boolean equals(Object object) {

if (object instanceof THIS_TYPE) {

THIS_TYPE other = (THIS_TYPE)object;

// Then compare this and other’s fields.

}

return false;

}

Recall that the cast
would throw a new
ClassCastException if
the object isn’t
THIS_TYPE

